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Abstract. Relaxed decision diagrams have been successfully applied
to solve combinatorial optimization problems, but their performance is
known to strongly depend on the variable ordering. We propose a port-
folio approach to selecting the best ordering among a set of alternatives.
We consider several different portfolio mechanisms: an offline predic-
tive model of the single best algorithm using classifiers, an online low-
knowledge algorithm selection, a static uniform time-sharing portfolio,
and a dynamic online time allocator. As a case study, we compare and
contrast their performance on the graph coloring problem. We find that
on this problem domain, the dynamic online time allocator provides the
best overall performance.

1 Introduction

Relaxed decision diagrams have recently been successfully applied within a range
of solution methodologies for discrete optimization, including constraint pro-
gramming, integer linear programming, integer nonlinear programming, and
combinatorial optimization. For exact decision diagrams (e.g., reduced ordered
binary decision diagrams), it is well known that the variable ordering greatly in-
fluences the size of the diagram [8, 9, 20]. Likewise, for relaxed decision diagrams
the variable ordering is often of crucial importance for their effectiveness. For
example, Bergman et al. [2,4] demonstrate that a variable ordering that yields
a small exact diagram typically also provides stronger dual bounds from the
relaxed diagram.

In some cases, e.g., for sequential scheduling problems, the variable ordering
is prescribed by the sequential nature of the application. In most cases, however,
we must design and/or select a variable ordering that we expect to perform well.
In the literature several variable ordering strategies, generic as well as problem-
specific, have been proposed. When decision diagrams are built from a single
top-to-bottom compilation, dynamic variable orderings can be very effective. For
example, a recent work by Cappart et al. [10] deploys deep reinforcement learning
to dynamically select the next variable during compilation. Dynamic variable
orderings are less applicable, however, to compilation via iterative refinement,
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in which case the ordering must be specified in advance. Oftentimes there is no
single variable ordering strategy that dominates all others, and the challenge
in practice is to select a strategy that works well for a specific instance. This
is a well-studied problem in artificial intelligence, in the context of algorithm
portfolios.

There are several ways to construct an algorithm portfolio: using static or
dynamic features, formulating predictive models at the algorithm or portfolio
level, predicting one algorithm to run per instance or creating a schedule of
algorithms to run, using a fixed portfolio or updating it online [16]. In this work,
as we consider variable ordering strategies for relaxed decision diagrams, our goal
is to study which portfolio design leads to the best performance of the diagram.

As a case study, we consider the graph coloring problem, for which a decision
diagram approach was recently introduced [19,18]. It uses an iterative refine-
ment procedure much like Benders decomposition or lazy-clause generation, by
repeatedly refining conflicts in the diagram until the solution is conflict free. Our
experimental results show a few key insights. Predictive methods using classifi-
cation models or exploration phases can lead to more instances solved optimally.
However, these methods may lead to delayed optimality results on problem in-
stances that are easy to solve. Allocating time to more than one variable ordering
can yield a solution with a unique best upper bound from one ordering and a
unique best lower bound from a different ordering. This indicates that it may be
advantageous to use one variable ordering to obtain a lower bound and another
to obtain the upper bound.

2 Decision Diagrams

We follow the framework of [5] and introduce decision diagrams as a graphical
representation of a set of solutions to a discrete optimization problem P defined
on an ordered set of decision variables X = {x1,zs,...,2,} and an objective
function f(X) to be minimized or maximized.

Definitions A decision diagram for P is a layered directed acyclic graph
D = (N, A) with node set N and arc set A. Diagram D has n + 1 layers of
nodes, where a node in layer j represents a state associated with variable x;.
Layer 1 contains a single root node r, and layer n + 1 contains a single terminal
node t. Arcs are directed from a node w in layer j to a node v in layer j + 1 and
labeled with a decision value for variable ;. The outgoing arcs for each node
must have unique labels. Hence, an arc-specified r-t path p = (a1, az,...,a,)
defines a complete variable assignment by setting x; to be the label of a; for
j=1,...,n. We let Sol(D) be the set of solutions represented by all r-t paths
of D. We will slightly abuse notation and denote by Sol(P) the set of feasible
solutions to problem P. We say that D is an ezact decision diagram for P if
Sol(D) = Sol(P). D is a relazed decision diagram for P if Sol(P) C Sol(D).
The objective function f(X) can be represented in D by appropriately asso-
ciating a ‘weight’ to each arc in the diagram. We define the weight of an r-t path
as a function (e.g., the sum) of its arc weights, and require that the weight of
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the path is equal to the objective value of the solution it encodes. The shortest
(or longest) path in D can be computed in linear time since D is acyclic. Such
path corresponds to an optimal solution if D is exact, and yields a dual bound if
D is relaxed.

We can extend the application of decision diagrams to let multiple paths in
D represent the solution to an optimization problem, as proposed in [19,18]. In
that case, an optimal solution can be computed as a constrained network flow.
We will use this application in our case study in Section 4.

Compilation Methods We limit our discussion to the two most popular de-
cision diagram compilation methods in the context of discrete optimization [5]:
top-down compilation and iterative refinement. Both methods rely on an under-
lying recursive formulation of the problem P, using states (associated with each
node in N) and labeled transition functions (represented by the arcs in A).

Top-down compilation expands the diagram one layer at the time. It considers
the nodes (states) in the previous layer, and creates all possible states according
to the transition function. Equivalent states are merged. For relaxed decision
diagrams, it is typical to impose a maximum size (or ‘width’) on the layers,
in which case non-equivalent nodes may need to be merged. This compilation
method can be applied recursively in a branch-and-bound like scheme to obtain
an exact solution method.

Tterative refinement alternatively starts with an initial relaxed decision dia-
gram in which each layer contains a single node, and all possible arcs between
the nodes in subsequent layers are present. The diagram is then iteratively re-
fined by splitting nodes and/or removing infeasible arcs. This is the method of
choice for MDD-based constraint propagation, in which case refinement is again
limited until a maximum width is reached. It can also be applied as a stand-alone
exact solution method, by repeated computation of the optimal solution (which
provides a dual bound) and refining any constraints that are violated along the
optimal path(s).

Variable Ordering Finding the variable ordering that yields the smallest
exact decision diagram is an NP-hard problem [20]. In practice, one therefore
typically relies on heuristic variable ordering strategies. An example of a problem-
specific variable ordering is the maximal path decomposition heuristic for com-
piling the independent sets of a graph [3,4]. It relies on an a priori computed
path decomposition of the input graph, and selects the next variable according
to this decomposition. An example of a generic variable ordering is the k-look
ahead ordering [3,4]. It selects the variable that yields the smallest-width layer
when k£ = 1, and evaluates a subset of k variables in general. We will present
several more variable ordering heuristics for our case study in Section 4.

The maximal path decomposition heuristic is static as the ordering is de-
termined once in advance. In contrast, the k-look ahead ordering is dynamic
because the selection of the next variable is determined during the compilation
and depends on the previous choices. Likewise, the reinforcement learning ap-
proach of Cappart et al. [10] is a dynamic variable ordering heuristic by design.
It uses an action-value function, based on neural fitted Q-learning, to determine
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the best variable to add to the ordering at each step. Due to its dynamic nature,
it can however not be effectively applied when the decision diagram is compiled
using iterative refinement (as in our case study). In our approach, we can com-
pose a portfolio of static and/or dynamic orderings, and may restrict ourselves
to static orderings in case compilation is done via iterative refinement.

3 Algorithm Portfolio Design

Algorithm portfolios have been studied widely in artificial intelligence, and have
been shown to be particularly effective for combinatorial optimization and Boolean
satisfiability [14,21]. While many variants exist, most approaches either select
one algorithm among a set of alternatives to solve a given problem, or run mul-
tiple algorithms (in parallel or sequentially) in dedicated time schedules. Typ-
ically one needs to trade off time for exploration (learning the performance of
each method) and exploitation (executing the seleced algorithm). We refer to
Kothoff [16] for a recent survey.

For our purposes we made a selection of four methods from the literature,
which contrast offline versus online learning, single versus multiple algorithm
selection, and low-level versus high-level knowledge utilization. We assume that
we are given a set of variable ordering heuristics (each leading to a different
algorithm), as well as a maximum overall time limit.

Static Uniform Time Allocator This multiple-algorithm selection approach
proceeds in rounds; in round ¢, each algorithm is given 2¢ seconds to solve the
problem [13]. We continue until the time limit is reached.

Offline Predictive Models Via Classifiers This approach uses classifica-
tion models to predict the optimal algorithm to run on a given problem instance
[21,17]. As input, the method requires several easily computable features of a
problem instance and logic to label the best algorithm for an instance given per-
formance data. Several classification models can be applied, including Bayesian
Networks (BN), Decision Trees (DT), k-Nearest Neighbor (kNN), Multilayer
Perceptrons (MP), Random Forests (RF), and Support-Vector-Machines (SVM).
The trained classification model is used to select one algoritm from the portfolio
to solve a given test instance.

Online Low-Knowledge Single Algorithm Selection This is a single-
algorithm selection method that runs in two phases [1]. An exploration phase
runs each algorithm for a time ¢, and then an exploitation phase chooses one algo-
rithm to run for the remaining time based on the results of the exploration phase.
In [1], three prediction rules for the exploitation phase are proposed: pcost_max
(select algorithm with best lower bound), pslope_mean (maximum mean of the
change in the best lower bound), and pextrap (extrapolate pcost_max with ps-
lope_mean to find the maximum lower bound at the time limit). For each pre-
diction rule, the optimal time ¢ to use on the testing data is found by running
t = 10,20,...,300. on the training instances and choosing the ¢ that gives the
maximum number of optimal lower bound results.



Variable Ordering for Decision Diagrams: A Portfolio Approach 5

Dynamic Online Time Allocator This is a multi-algorithm selection method
following a dynamic online schedule [13]. It proceeds in rounds, such that round
t has a limit of 2! seconds. We initially assign to each algorithm a share of
the runtime. After each round, the time share for each algorithm is updated
based on a function of the problem instance features, the current runtime for
each algorithm, and the performance of each algorithm. Similar to the Low-
Knowledge method of [1], we use the training instances to tune the parameters
of the updating function to use on the test instances.

4 Case Study: Graph coloring

Given a graph, the graph coloring problem is to minimize the number of colors
necessary to color all vertices such that no vertices sharing an edge have the same
color. A decision diagram approach for graph coloring was proposed in [19, 18],
using iterative refinement based on conflict resolution. The decision diagram
represents the independent sets (color classes) of the graph, where each layer
corresponds to a vertex of the input graph. The optimal solution corresponds to
a collection of r-t paths that cover all vertices. We use the following six variable
orderings in our portfolio:

Lexicographic: Order the variables as they are input into the problem.

Maximum Connectivity /Degree: Add vertices one at a time, choosing the
one with the maximum number of dependencies already in the ordering, and
the one with the largest degree as a tie-breaker [19].

DSATUR: Use the classic graph coloring heuristic from Brélaz [7].

Maximal Paths: Use a maximal path decomposition to order the variables [2].

Maximal Cliques: Use a maximal clique decomposition to order the variables.

Minimum Width: Apply a variable ordering with minimum width, that is,
the maximum number of dependencies for a variable that come before that
variable in the ordering [12].

In our evaluation, we will refer to these orderings as ‘lex’; ‘max_degree’, ‘dsatur’,
‘max_path’, ‘max_clique’, and ‘min_width’, respectively. We note that the latter
two orderings have not been applied before to decision diagram compilation, to
the best of our knowledge.

Training and Testing Data We used Culberson’s random instance generator
[11] to generate 432 graphs. We generated 4 graphs of each type in the cross
product of n=(100, 250, 500, 1000), density=(0.1, 0.5, 0.9), embedded colorings
of (0, 10, 20), (0, 25, 50), (0, 25, 100) and (0, 50, 100) for each n respectively,
and variability=(0, 1) when the embedding does not equal 0. We use 3 graphs
of each type as a training set (324 graphs), and the 4th graphs as a testing set
(108 graphs). We ran each algorithm on these graphs for 1800 seconds. We also
used a set of 137 graphs from the coloring and clique part of the well-established
Dimacs Challenge [15] as another, completely independent, test set. The Dimacs
experiments ran with a time limit of 3600 seconds.
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Uniform Time Allocator Ordering For the uniform time allocator, the order
the heuristics run in each round is: min_width, max_clique, dsatur, max_degree,
max_path, lex.

Predictive Model Features For the predictive model, we calculate 50 charac-
teristics of each problem instance. We use a subset of the features from Musliu
and Schwengerer [17], by including only these categories: graph size features,
node degree statistics, maximal clique statistics, local clustering coefficient statis-
tics, weighted local clustering coefficient statistics, and dsatur greedy coloring
statistics. Problem instances were labelled with a best algorithm based first on
maximum lower bound, then best time to the best lower bound, and then most
instances solved to optimality. To simplify parameter configuration for the clas-
sification models, we used parameters recommended in [17].

Dynamic Time Allocator Update Function We use an updating function
with three parameters: maximum lower bound (Ib_bonus), maximum change
in lower bound (delta_bonus), and a tie parameter (tie_bonus) that encourages
reversion to the uniform time allocator. Given a time share allocation (voy, vos,

.., vog) at the beginning of a round, this function adds 1b_bonus to the vo;
for the variable ordering ¢ with the maximum lower bound at the end of the
round. Similarly, delta_bonus adds to the maximum change in lower bound from
the beginning of the round to the end of the round. In the case of any ties, the
bonus is divided evenly amongst the tied variable orderings. In the case that all
variables tie for both lb_bonus and delta_bonus, tie_bonus is added to all vo;.
After adding bonuses, all vo; are re-normalized so that they sum to 1.

5 Experimental Evaluation

All variable orderings and iterative refinement algorithms are written in C++.
The data evaluation scripts are written in Python, using a wrapper around
the Weka data mining library version 1.0.6 for the machine learning models
used [6]. Following previous studies, we assume an ”ideal” machine with no task
switching overhead [13]. Therefore, our experiments were run for each single
variable ordering, and this data was compiled to simulate each portfolio method.
All experiments were run on an Intel Xeon 2.33GHz CPU with Ubuntu 18.04.

We evaluate the variable orderings (and portfolios) in terms of their per-
formance: how many instances can be solved within a given time limit? Before
running our portfolio methods, we confirmed that none of the individual order-
ings always dominates the others, and that each ordering can be the best for at
least one instance. We also compare the portfolios with the hypothetical ‘ora-
cle’ portfolio, which selects the best variable ordering for each instance. Fig. 1
presents the performance profile (number of instances solved within a given time)
for each of the individual orderings, as well as the oracle. The figure shows that
an algorithm portfolio has the potential to solve more instances to optimality,
and in quicker times than any one algorithm on its own. We next present an
assessment of each of the four portfolio approaches from Section 3.
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Fig. 1. The number of instances solved to optimality within ¢ seconds for each variable
ordering, the oracle, and the uniform time-sharing portfolio. The time is in log-scale.

Experiment 1: Uniform time-sharing portfolio We included this method
as a baseline comparison. Despite its simplicity, the uniform time-sharing port-
folio solves 55 Dimacs instances optimally, and solves more Dimacs instances
in faster times than all of the variable orderings individually, as can be seen in
Fig. 1(b). This method also works well, but not as well, on the Test Culberson
instances, as presented in Fig. 1(a).

Experiment 2: Predictive model The predictive model used a greedy for-
ward feature selection which chose 28 features (4 basic features and 24 product
features) ranging over all of the feature categories (the same features were used
for all models). The MP took 10 minutes to train, while the other models needed
less than one minute to train. All of the testing took less than a second. Among
all instances, the median time taken to compute all features for an instance is
1 second, the 75th percentile is 19 seconds, and the maximum is 2562 seconds.
Most classifiers showed similar performance, with the Random Forests (RF) as
the overall best performing method. We present its performance (relative to the
other portfolios) in Fig. 2. Note that the models are trained on Culberson data,
so the Culberson test results simulate a user having access to results from a simi-
lar problem set, while the Dimacs results simulate a user lacking similar training
data. This discrepancy is apparent in the Fig. 2, where the RF’s predictions
show good late runtime performance for Culberson, but not for Dimacs.

Experiment 3: Low-knowledge algorithm selection Recall that for six
orderings and a time limit 7', the training phase for this method takes 6 * ¢
seconds, while the the final selected algorithm runs for a total of ¢ + (T — 6 x t)
seconds. As stated before, we use T' = (1800, 3600) for the Dimacs and Culberson
Test sets respectively. Based on the results of the training data, we set t =
(30,10, 10) for pcost_max, pslope_mean, and pextrap respectively. Among these,
pcost_max (select the ordering with the best lower bound) performed best. We
present its performance in Fig. 2. It is apparent that although the 30-second
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Fig. 2. The number of instances solved to optimality within ¢ seconds for one setting
of each portfolio method in each category. ‘RF’ stands for the predictive model using
random forests. ‘PCOST’ stands for the low-knowledge method using best lower bound.

exploitation period slows the initial progress of pcost_max, it later shows best
performance, with 56 instances solved for the Dimacs instances, more than any
of the other portfolio approaches.

Experiment 4: Dynamic online time allocator We ran this method on
the training data using values of (0, 2, 4, 6) for each possible bonus value. Based
on those results, for the testing sets we used lb_bonus = 6, delta_bonus = 6, and
tie_bonus = 6. These large yet equal bonuses made it quick to either converge
to an optimal allocation share or revert back to the uniform distribution. Fig. 2
shows that this method is overall the best performing portfolio. Since this method
can combine lower and upper bounds from different variable orderings, it can
prove optimality earlier than individual orderings, and can even outperform the
oracle (Fig. 2)(a)). However, it solves one fewer Dimacs instance (55 total) than
pcost_max.

6 Conclusion

We presented a portfolio approach to selecting the best variable ordering for
relaxed decision diagrams in the context of combinatorial optimization. We con-
sidered four approaches: uniform time allocation, predictive modeling, a low-
knowledge selection procedure, and a dynamic online time allocator. We com-
pared the performance of these methods on the graph coloring problem, and find
that even the simplest portfolio (uniform time allocation) already outperforms all
individual orderings. The dynamic online time allocator showed the best overall
performance. As it can combine lower and upper bounds from different orderings,
it is even able to outperform an oracle that selects the best single ordering for
each instance. We hope that this study will help make decision-diagram based
optimization methods more robust in general.
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