
Complete Symmetry Breaking Constraints for the Class
of Uniquely Hamiltonian Graphs?

Avraham Itzhakov and Michael Codish

Department of Computer Science
Ben-Gurion University of the Negev

Beer-Sheva, Israel
{itzhakoa,mcodish}@cs.bgu.ac.il

Abstract. This paper introduces, for the first time, a complete symmetry break-
ing constraint of polynomial size for a significant class of graphs: the class of
uniquely Hamiltonian graphs. We introduce a canonical form for uniquely Hamil-
tonian graphs and prove that testing whether a given uniquely Hamiltonian graph
is canonical can be performed efficiently. Based on this canonicity test, we con-
struct a complete symmetry breaking constraint of polynomial size which is sat-
isfied only by uniquely Hamiltonian graphs which are canonical. We apply the
proposed symmetry breaking constraint to show new results regarding the class
of uniquely Hamiltonian graphs. Given that it is unknown if there exist polyno-
mial sized complete symmetry breaking constraints for graphs, this paper makes
a first step in the direction of identifying specific classes of graphs for which such
constraints do exist.

Keywords: Symmetry breaking · Uniquely Hamiltonian graphs · Isomorph-free graph
generation

1 Introduction

Graph search problems are fundamental in graph theory. Such problems include: ex-
istence problems, where the goal is to determine whether a simple graph with certain
graph properties exists, enumeration problems, which are about finding all solutions
modulo graph isomorphism, and extremal problems, where we seek the smallest/largest
solution with respect to some target such as the number of edges or vertices in a solu-
tion. Solving graph search problems is typically hard due to the enormous search space
and the large number of symmetries. For graph search problems, any graph obtained by
permuting the vertices of a (non-)solution is also a (non-)solution, which is isomorphic,
or “symmetric”. Hence, any permutation of the vertices of a graph is a symmetry, and
each isomorphism class of graphs consists of either equivalent solutions, or equivalent
non-solutions.

The presence of symmetries often causes redundant search effort by revisiting sym-
metric objects. To optimize the search we aim to restrict it to focus on one graph from
each equivalence class. The focus on symmetry elimination has facilitated the solution
? Supported by the Israel Science Foundation, grant 625/17.



of many open instances of combinatorial search problems and graph search problems in
particular. For example, the proof that the Ramsey number R(3, 3, 4) is equal to 30 [5],
the solution for the Sudoku minimum number of clues problem [16], and the enumera-
tion of all non-word representable graphs of order 12 [15]. Nevertheless, there is to date
no efficient way to avoid all symmetries when searching for a general graph, regardless
of the search method.

Constraint programming is a powerful paradigm to solve combinatorial problems.
The essence of constraint programming is to use constraints to prune the search space
efficiently during search. A constraint based approach to solve graph search problems is
to represent an unknown graph as a set of Boolean variables which define its adjacency
matrix, and to model the desired graph properties as constraints on these variables. A
constraint solver is then applied to find a solution graph which satisfies these constraints.

One common approach to break symmetries in constraint programming is to add
symmetry breaking constraints [8, 24, 25] which are satisfied by at least one member
of each isomorphism class. A symmetry breaking constraint is called complete if it
is satisfied by exactly one member of each isomorphism class and partial otherwise.
A universal measure for the size of a symmetry breaking constraint is the size of its
representation in propositional logic. All known techniques to define complete symme-
try breaking constraints for graph search problems are based on predicates which are
exponential in size. There is no known polynomial size complete symmetry breaking
constraint for graph search problems. For this reason, in practice, one often applies par-
tial symmetry breaking constraints [6, 7] which are polynomial in size or, one seeks
compact representations for complete symmetry breaking constraints on small graphs
[4, 13–15].

In this paper we identify a particular class of graphs for which all symmetries can
be broken efficiently. We introduce the notion of symmetry breaking constraints for a
particular class of graphs. Given a class C of graphs, a complete (partial) symmetry
breaking constraint for that class is satisfied by exactly (at least) one member of each
isomorphism class of graphs from C. We focus on the class of uniquely Hamiltonian
graphs. This is the class of graphs that contain exactly one Hamiltonian cycle. The
research community has shown interest in graphs of this type [2, 9, 11, 23] and there
remain unresolved questions regarding them.

This paper makes the following contributions. First, we introduce a canonical form
for uniquely Hamiltonian graphs which can be tested in polynomial time. Second, we
show that the automorphism group and the canonical form of a given uniquely Hamilto-
nian graph can be computed efficiently if its Hamiltonian cycle is known. Third, using
these results, we introduce a complete symmetry breaking constraint of polynomial size
for the class of uniquely Hamiltonian graphs. Finally, we use this symmetry breaking
constraint and apply a constraint programming approach to show new results regard-
ing uniquely Hamiltonian graphs. We generate all order n ≤ 18 uniquely Hamiltonian
graphs of minimum degree 3, and all order n ≤ 20 uniquely Hamiltonian graphs of
minimum degree 3 and girth at least 4. We determine the, previously unknown, small-
est orders for which uniquely Hamiltonian graphs of minimum degree 3 and girths 3
and 4 exist. The contributions of this paper provide a first step to answer a broader



question: are there significant classes of graphs for which complete symmetry breaking
constraints of polynomial size exist?

The rest of this paper is structured as follows. Section 2 presents preliminary def-
initions and notation. Section 3 introduces a canonical form for uniquely Hamiltonian
graphs. We show an efficient canonicity test which forms the basis for the construction
of a complete symmetry breaking constraint for uniquely Hamiltonian graphs. Section 4
introduces a complete symmetry breaking constraint of polynomial size for the class of
uniquely Hamiltonian graphs. Section 5 describes a constraint programming approach
which applies the proposed symmetry breaking constraint to generate non-isomorphic
uniquely Hamiltonian graphs. This approach is then refined and shown to provide so-
lutions to previously unanswered questions regarding uniquely Hamiltonian graphs.
Section 6 describes the current state-of-the-art for generation of uniquely Hamiltonian
graphs and compares it to our approach. Based on the results achieved in this paper,
we suggest possible improvements to the state-of-the-art approach. Finally, Section 7
concludes.

2 Preliminaries

Throughout this paper we consider simple graphs, i.e. undirected graphs with no self
loops. The vertex set of a graph G of order n, is denoted V (G) and assumed to be
V = {1, . . . , n}, its edge set is denoted E(G), and in abuse of notation its adjacency
matrix representation is also denoted G. The set of simple graphs on n vertices is de-
noted Gn. For two graphs H,G, we say that H is a subgraph of G, denoted H ⊆ G
if V (H) ⊆ V (G) and E(H) ⊆ E(G). The cycle graph Cn is the graph with vertices
V =

{
1, . . . , n

}
(n ≥ 3) and edges E =

{
{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}

}
.

A Hamiltonian cycle in a graph G ∈ Gn is a permutation h = [v1, . . . , vn] of the ver-
tices such that for every pair 1 ≤ i < n, {vi, vi+1} ∈ E(G) and also {vn, v1} ∈ E(G).
Two Hamiltonian cycles h1, h2 are considered to be the same if and only if their cor-
responding edge sets are equal. A graph is called uniquely Hamiltonian if it contains
exactly one Hamiltonian cycle. The set of uniquely Hamiltonian graphs of order n is
denoted UHn. An unknown graph of order n is represented as an n× n adjacency ma-
trix of Boolean variables which is symmetric and has the values false (denoted by 0)
on the diagonal. We denote by Gi,j the element at row i and column j of the adjacency
matrix of a (unknown) graph G.

The group of all permutations on {1 . . . n} is denoted Sn. We represent a permuta-
tion π ∈ Sn as a sequence of length n where the ith element indicates the value of π(i).
For example: the permutation [2, 3, 1] ∈ S3 maps as follows: {1 7→ 2, 2 7→ 3, 3 7→ 1}.
The inverse permutation of a permutation π ∈ Sn is the permutation which maps π(i)
to i, for all 1 ≤ i ≤ n. For a permutation π, its inverse permutation is denoted by π−1.
Permutations act on graphs and on unknown graphs in the natural way. For a graph
G ∈ Gn and also for an unknown graph G, viewing G as an adjacency matrix and
given a permutation π ∈ Sn, then π(G) is the adjacency matrix obtained by mapping
each element Gi,j to Gπ(i),π(j) (for 1 ≤ i, j ≤ n). The permutation, π(G) of G, can
equivalently be described as the adjacency matrix obtained by permuting both rows and
columns of G using π. Two graphs G,H ∈ Gn are isomorphic, denoted G ≈ H if



there exists a permutation π ∈ Sn such that G = π(H). An automorphism of a graph
G ∈ Gn is a permutation π ∈ Sn such that G = π(G). The set of all automorphisms of
a graph G ∈ Gn forms a group which is denoted Aut(G). For a group X , we use the
notation Y 6 X to indicate that Y is a subgroup of X . The dihedral group Dn 6 Sn
is the automorphism group of the cycle graph Cn. The dihedral group consists of 2n
permutations corresponding to n rotations and n reflections of Cn. Example 1 details
the automorphisms in D4.

Example 1. Below is the cycle graph C4 and its corresponding set of automorphisms
which are the elements of the dihedral group D4.

1 2

34

D4 =


[1, 2, 3, 4], [4, 3, 2, 1],
[2, 3, 4, 1], [1, 4, 3, 2],
[3, 4, 1, 2], [2, 1, 4, 3],
[4, 1, 2, 3], [3, 2, 1, 4]


An order n graph search problem is a predicate, ϕ(G), on an unknown, order n

graph G, which is closed under isomorphism. A solution to ϕ(G) is a satisfying assign-
ment for the variables of G. Given a (non-)solution for a graph search problem, each
permutation of its vertices yields a symmetric (non-)solution.

One common way to break all symmetries in graph search problems is to define
a symmetry breaking predicate which is satisfied only by canonical representatives of
each isomorphism class. A canonical form of a graph G, denoted by Can(G), is a
graph isomorphic to G such that for every two graphs H,G it holds that Can(G) =
Can(H) if and only if H ≈ G. The graph Can(G) is the canonical representative of
the isomorphism class of G.

We consider the lexicographic ordering over graphs defined viewing their adjacency
matrices as strings. Because adjacency matrices are symmetric with zeroes on the di-
agonal, it suffices to focus on the upper triangle parts of the matrices [3]. Let s1, s2 be
the strings obtained by concatenating the rows of the upper triangular parts of the adja-
cency matrices of two graphs G,H ∈ Gn respectively. Then G ≤lex H if and only if
s1 ≤lex s2. When G,H are unknown graphs, expressed in terms of Boolean variables,
then the lexicographic ordering can be viewed as specifying a lexicographic order con-
straint over these variables. This constraint is true with respect to an assignment for the
variables of G,H if G ≤lex H under this assignment.

Example 2. The following depicts an unknown graph G and its permutation π(G), for
π = [2, 1, 3, 5, 4], both represented as adjacency matrices of Boolean variables.

G =


0 x1 x2 x3 x4
x1 0 x5 x6 x7
x2 x5 0 x8 x9
x3 x6 x8 0 x10
x4 x7 x9 x10 0

 π(G) =


0 x1 x5 x7 x6
x1 0 x2 x4 x3
x5 x2 0 x9 x8
x7 x4 x9 0 x10
x6 x3 x8 x10 0


The constraint G ≤lex π(G) is

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x1, x5, x7, x6, x2, x4, x3, x9, x8, x10]

and it can be simplified as described by Frisch et al. [10] to:

[x2, x3, x4, x8] ≤lex [x5, x7, x6, x9]



Constraint Programming (CP) is a paradigm in which problems are expressed declar-
atively using constraints over variables (a constraint model). Each variable is associated
with a domain of possible values. Each constraint is defined over a subset of variables
and limits the combination of values that these variables can be assigned to. The goal
of a constraint solver is to find an assignment for the variables which satisfies all the
constraints. In constraint programming, constraints are implemented by propagators.
The purpose of a propagator, for a constraint, is to remove inconsistent values from do-
mains of variables. That is, values that cannot be part of a solution for this constraint.
Constraint solvers typically apply a backtracking search where propagators for the con-
straints of a problem are repeatedly executed to prune the search space.

3 A Canonical Form of Uniquely Hamiltonian Graphs

In this section we define a canonical form for uniquely Hamiltonian graphs. We in-
troduce an efficient test of canonicity for uniquely Hamiltonian graphs. Furthermore,
we show that computing the canonical form and the automorphism group of a given
uniquely Hamiltonian graph can be performed efficiently given its Hamiltonian cycle.
The proposed canonical form is the basis for the construction of a complete symmetry
breaking constraint of polynomial size for uniquely Hamiltonian graph search problems
defined in this paper.

Before introducing the main results of this section, we provide some background
notation. Given an order n uniquely Hamiltonian graphG and any permutation h ∈ Sn.
Denote by iso(G, h) the set of graphs isomorphic to G which contain the Hamilto-
nian cycle h. Figure 1 depicts (a) the uniquely Hamiltonian graph G and (b) the sets
iso(G, [1, 2, 3, 4]) and iso(G, [3, 1, 2, 4]) which consist of the sets of graphs from the
isomorphism class of G which contain respectively the Hamiltonian cycles [1, 2, 3, 4]
and [3, 1, 2, 4].

1 2

34

iso(G, [1, 2, 3, 4]) =


1 2

34 ,

1 2

34


iso(G, [3, 1, 2, 4]) =


1 2

34 ,

1 2

34


(a) (b)

Fig. 1: (a) the graph G, and (b) the sets iso(G, [1, 2, 3, 4]) and iso(G, [3, 1, 2, 4]).

In Lemma 1 we prove that the set iso(G, h) is non-empty for any uniquely Hamil-
tonian graph G ∈ UHn and any permutation h ∈ Sn. In Lemma 2 we prove that if



G1 and G2 are isomorphic uniquely Hamiltonian graphs of order n then iso(G1, h) =
iso(G2, h) for any permutation h ∈ Sn.

Lemma 1. Let G ∈ UHn be a uniquely Hamiltonian graph and let h ∈ Sn be a
permutation of its vertices. Then iso(G, h) is not empty.

Proof. Let G ∈ UHn and let h′ be the Hamiltonian cycle in G. Let π ∈ Sn be a
permutation π which maps h′ to h. Namely π◦h′ = h. The graph π(G) is isomorphic to
G and thus also uniquely Hamiltonian. By the choice of π it follows that π(G) contains
the Hamiltonian cycle h. Hence, π(G) ∈ iso(G, h).

Lemma 2. Let G1, G2 ∈ UHn be isomorphic uniquely Hamiltonian graphs, and let
h ∈ Sn be a permutation. Then iso(G1, h) = iso(G2, h).

Proof. Let G1, G2 and h be as in the premise. Let H ∈ iso(G1, h). By definition
H ≈ G1. Hence H ≈ G2. H is uniquely Hamiltonian, contains the Hamiltonian cycle
h, and isomorphic to G2. Hence, by definition H ∈ iso(G2, h). The proof for the
reverse direction is obtained by swapping the roles of G1 and G2.

The following definition introduces a canonical form for a uniquely Hamiltonian
graph G as the lexicographically smallest graph isomorphic to G, which contains the
Hamiltonian cycle [1, 2, . . . , n].

Definition 1 (uniquely Hamiltonian graph canonicity). Let G ∈ UHn be a uniquely
Hamiltonian graph of order n. The following is a canonical form of G:

CanUH(G) ≡ min≤lex
iso(G, [1, 2, . . . , n])

The following theorem proves that Definition 1 is a well defined canonical form.

Theorem 1. Let G,H ∈ UHn be order n uniquely Hamiltonian graphs. Then,

CanUH(G) = CanUH(H) if and only if G ≈ H .

Proof. (⇐) Assume that G,H ∈ UHn and G ≈ H . The sets iso(G, [1, 2, . . . , n])
and iso(H, [1, 2, . . . , n]) are finite non-empty sets, thus, CanUH(G),CanUH(H) exist
(Lemma 1). Since iso(G, [1, 2, . . . , n]) = iso(H, [1, 2, . . . , n]) (Lemma 2) it follows
that CanUH(G) = CanUH(H). (⇒) Assume that G,H ∈ UHn and CanUH(G) =
CanUH(H). By definition, G ≈ CanUH(G) and H ≈ CanUH(H). So, G ≈ H .

The following theorem is the main result of this section and suggests an efficient
test of canonicity for uniquely Hamiltonian graphs with respect to Definition 1.

Theorem 2. Let G ∈ UHn be a uniquely Hamiltonian graph. Then G is canonical if
and only ifG contains the Hamiltonian cycle [1, 2, . . . , n] and ∀π ∈ Dn,G ≤lex π(G).

Proof. (⇐) LetG ∈ UHn be a uniquely Hamiltonian graph with the Hamiltonian cycle
[1, 2, . . . , n] and assume that ∀π ∈ Dn : G ≤lex π(G). We prove that G is the lexi-
cographically smallest graph in iso(G, [1, 2, . . . , n]) and thus by definition it is canon-
ical. Let H ∈ iso(G, [1, 2, . . . , n]). So there exists σ ∈ Sn such that H = σ(G). By



definition, the edges
{
{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}

}
⊆ E(G) are mapped to{

{σ(1), σ(2)}, {σ(2), σ(3)}, . . . , {σ(n− 1), σ(n)}, {σ(n), σ(1)}
}
⊆ E(H). Thus,

[σ(1), . . . , σ(n)] is a Hamiltonian cycle in H . Since H ∈ iso(G, [1, 2, . . . , n]), the
only Hamiltonian cycle in H is [1, 2, . . . , n]. So, [σ(1), . . . , σ(n)] and Cn are the same
cycle (consist in the same edges) which implies that σ is an automorphism of the cy-
cle graph Cn. Thus, by definition, σ ∈ Dn. We assume that ∀π ∈ Dn : G ≤lex
π(G). Thus, G ≤lex σ(G) = H and we conclude that G is the smallest graph in
iso(G, [1, 2, . . . , n]).

(⇒) Suppose that G ∈ UHn is a canonical uniquely Hamiltonian graph. By defi-
nition G is the lexicographically smallest graph, in its isomorphism class, that contains
the Hamiltonian cycle Cn = [1, 2, . . . , n]. For any π ∈ Dn, the graph π(G) also con-
tains the Hamiltonian cycle Cn because π is an automorphism of the cycle graph Cn
and hence preserves Cn in π(G). The graph π(G) is isomorphic to G and contains the
Hamiltonian cycle Cn. Hence it follows that G ≤lex π(G).

The following corollary provides the basis for the efficient computation of the canon-
ical form of a given uniquely Hamiltonian graph with its Hamiltonian cycle h.

Corollary 1. Let G ∈ UHn be a uniquely Hamiltonian graph with its Hamiltonian
cycle h. Recall that we view h as a permutation. Then,

CanUH(G) = min≤lex

{
π(h−1(G))

∣∣π ∈ Dn

}
where h−1 is the inverse permutation of h. One can view h−1 as mapping the cycle h
to the cycle [1 . . . n].

Let G ∈ UHn and let h be its Hamiltonian cycle. To compute CanUH(G), con-
sider the graph h−1(G) which is isomorphic to G and contains the Hamiltonian cy-
cle [1, 2, . . . , n]. Then, compute iso(G, [1, 2, . . . , n]) by applying on h−1(G) all the
permutations in Dn. Observe that iso(h−1(G), [1, 2, . . . , n]) = iso(G, [1, 2, . . . , n]).
Finally, the lexicographically smallest graph from iso(G, [1, 2, . . . , n]) is CanUH(G).
Since the size of iso(G, [1, 2, . . . , n]) is bounded by 2n, finding the lexicographically
smallest graph can be done efficiently.

The following observation provides the basis for the efficient computation of the
automorphism group of a given uniquely Hamiltonian graph G with its Hamiltonian
cycle h.

Observation 1. Let G be a uniquely Hamiltonian graph with the Hamiltonian cycle h.
Then Aut(G) 6 Dh

n, where Dh
n is the automorphism group of h.

By definition every automorphism of G preserves the adjacencies of the Hamilto-
nian cycle h and hence it is an element of Dh

n. Hence, to compute the automorphism
group of G it is sufficient to consider only permutations from Dh

n. Observe that each
element in Dh

n is of the form π ◦ h where π ∈ Dn. Hence, Dh
n can be computed effi-

ciently from the elements of Dn, and its size is exactly 2n. It is straightforward to test
each permutation from Dh

n to determine if it is an automorphism of G.
In the next section we show how to apply the results of this section to break sym-

metries in the search for uniquely Hamiltonian graphs.



4 Symmetry Breaking for Uniquely Hamiltonian Graphs

In this section we introduce a complete symmetry breaking constraint of polynomial
size for the class of uniquely Hamiltonian graphs. A symmetry breaking constraint ψ
is complete for a class of graphs C, if ψ is satisfied by exactly one member of each
isomorphism class of graphs from C. If ψ is complete for a class of graphs C then
one can view the solutions of ψ, restricted to elements of C, as a set of canonical
representatives of C.

We introduce a constraint sbUH such that for a uniquely Hamiltonian graph G,
sbUH(G) is true if and only ifG is canonical with respect to Definition 1. The definition
of sbUH is based on the canonicity test for a given graph, specified in Theorem 2.
The constraints comprising sbUH(G), on the unknown graph G, are derived from the
conditions of the canonicity test for a given graph.

The following definition specifies a complete symmetry breaking constraint sbUH
for the class of uniquely Hamiltonian graphs.

Definition 2. Let G be an unknown order n graph. Then,

sbUH(G) = (Cn ⊆ G ∧
∧

π∈Dn

G ≤lex π(G))

The following theorem proves that sbUH is a complete symmetry breaking con-
straint of polynomial size.

Theorem 3. sbUH is a complete symmetry breaking constraint of polynomial size for
uniquely Hamiltonian graphs.

Proof. The fact that sbUH is complete follows directly from the construction. For any
G ∈ UHn, there exists exactly one graph (the graph CanUH(G)) from the isomor-
phism class of G for which sbUH is true. The fact that sbUH is of polynomial size
follows because it consists of 2n lexicographic order constraints of size

(
n
2

)
, and an ad-

ditional constraint which fixes variables to ensure that the Hamiltonian cycle [1, . . . , n]
is present.

Example 3. Consider the unknown graphG of order 5 and its corresponding constraint,
sbUH(G):

G =


0 x1 x2 x3 x4
x1 0 x5 x6 x7
x2 x5 0 x8 x9
x3 x6 x8 0 x10
x4 x7 x9 x10 0





(x1 ∧ x4 ∧ x5 ∧ x8 ∧ x10) ∧
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x4, x3, x2, x1, x10, x9, x7, x8, x6, x5] ∧
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x5, x6, x7, x1, x8, x9, x2, x10, x3, x4] ∧
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x1, x7, x6, x5, x4, x3, x2, x10, x9, x8] ∧
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x8, x9, x2, x5, x10, x3, x6, x4, x7, x1] ∧
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x5, x2, x9, x8, x1, x7, x6, x4, x3, x10] ∧
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x10, x3, x6, x8, x4, x7, x9, x1, x2, x5] ∧
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x8, x6, x3, x10, x5, x2, x9, x1, x7, x4] ∧
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x4, x7, x9, x10, x1, x2, x3, x5, x6, x8] ∧
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x10, x9, x7, x4, x8, x6, x3, x5, x2, x1]

Simplifying each lex constraint independently and taking into consideration the fact
that the variables x1, x4, x5, x8, x10 are fixed to true, yields the following simplified
model for sbUH(G):

(x1 ∧ x4 ∧ x5 ∧ x8 ∧ x10) ∧
[x2, x6] ≤lex [x3, x9] ∧

[x2, x3, x6, x7, x9] ≤lex [x6, x7, x9, x2, x3] ∧
[x2, x3] ≤lex [x7, x6] ∧

[x2, x3, x6, x7, x9] ≤lex [x9, x2, x3, x6, x7] ∧
[x3, x6] ≤lex [x9, x7] ∧

[x2, x3, x6, x7, x9] ≤lex [x3, x6, x7, x9, x2] ∧
[x2, x7] ≤lex [x6, x9] ∧

[x2, x3, x6, x7, x9] ≤lex [x7, x9, x2, x3, x6] ∧
[x2, x3] ≤lex [x9, x7]

5 Isomorph Free Generation of Uniquely Hamiltonian Graphs

In this section we demonstrate the application of the symmetry breaking constraint in-
troduced in Section 4 to solve graph search problems concerning uniquely Hamiltonian
graphs. We focus in particular on enumeration problems where the goal is to enumerate
all solutions modulo graph isomorphism, and on extremal problems, where we seek the
smallest/largest solution with respect to some target.

Any algorithm for the generation of uniquely Hamiltonian graphs, possibly with
additional properties, must deal with two issues:

1. restricting the process to graphs which contain exactly one Hamiltonian graph; and
2. eliminating symmetries among the generated graphs.



Our main contribution is with respect to the second issue. Given a set of uniquely Hamil-
tonian graphs which contain the cycle Cn, the polynomial sized predicate sbUH elimi-
nates all symmetries. We address the first issue by defining a propagator which ensures
that each generated graph contains exactly one Hamiltonian cycle.

We adopt a constraint based approach combining both issues and show that elim-
inating all symmetries when searching for uniquely Hamiltonian graphs can be done
efficiently. First, we demonstrate this approach for generation of all uniquely Hamil-
tonian graphs of order n ≤ 13 modulo graph isomorphism. To this end, we intro-
duce a constraint model for which the satisfying assignments represent the exact set
of canonical uniquely Hamiltonian graphs. Then, we demonstrate that by refining this
constraint model we can resolve several previously unanswered questions regarding
uniquely Hamiltonian graphs. All computations were performed on an Intel Xeon E5-
2660 CPU’s clocked at 2 GHz, Each instance is run on a single thread.

5.1 The Constraint Model

We present a constraint model for isomorph free generation of order n uniquely Hamil-
tonian graphs. The model consists of

(
n
2

)
Boolean variables representing the order n

unknown graph G (for each 1 ≤ i, j ≤ n, the variable Gi,j is true if and only if the
edge {i, j} is present in the solution), and two constraints:

1. sbUH(G): the symmetry breaking constraint; and
2. ϕUH(G): ensures that there is exactly one Hamiltonian cycle in G.

The constraint sbUH(G) presented in Definition 2 is a conjunction of 2n+1 constraints:
one constraint which fixes the edges of the cycle Cn, and 2n lexicographic order con-
straints corresponding to the permutations in Dn.

The constraint ϕUH(G) is implemented by a propagator which forbids the presence
of an additional Hamiltonian cycle. We observe that since the symmetry breaking con-
straint sbUH(G) fixes the Hamiltonian cycle Cn, it is sufficient to ensure that each edge
e /∈ Cn is not part of a Hamiltonian cycle.

Algorithm 1 Propagate no additional Hamiltonian cycle
procedure PROPAGATEUH(G)

input: An unknown graph G which is assumed to contain the Hamiltonian cycle Cn ;
propagator event: when a graph variable Gi,j is fixed to 1
if {i, j} ∈ E(Cn) then return
else

for each Hamiltonian path [v1, . . . , vn] in G which involves the edge {i, j} do
remove 1 from the domain of the variable Gvn,v1

Algorithm 1 describes a propagator for the constraint ϕUH(G). The propagator is
executed whenever a graph variable Gi,j is assigned the value 1, which implies that
the edge e = {i, j} is added to the graph. The propagator iterates over all Hamiltonian
paths in G which contain the edge e and checks that each such path P = [v1, . . . , vn]



cannot be closed to a Hamiltonian cycle. To ensure this, the propagator removes the
value 1 from the domain of the variable Gvn,v1 , so that the edge {vn, v1} cannot be
present in a solution. If the domain of the variable Gvn,v1 consists of the single value 1,
then the propagator fails. One can show that Algorithm 1 ensures domain consistency,
and that it defines an idempotent propagator (i.e reaches a fix point after a single execu-
tion). In theory, the time complexity of Algorithm 1 is equivalent to the complexity of
finding all Hamiltonian paths in a graph. The fastest known such algorithm is based on
dynamic programming and has time-complexity O(2n ∗ nO(1)) [1, 12] where n is the
number of vertices. Despite this worst-case time-complexity, in practice, algorithms for
finding Hamiltonian paths can effectively deal with large graphs. In our experiments we
consider graphs of relatively small order (n ≤ 22) and of a very particular form: we al-
ways add a single edge to a graph with at most one Hamiltonian cycle. The experiments
show that the number of Hamiltonian paths encountered is not an obstacle.

We also found that a slight weakening of Algorithm 1 significantly improves the
solving time. Instead of iterating, in the propagator, over all Hamiltonian paths with the
edge {i, j}, we iterate only on those Hamiltonian paths in which the first and second
vertices are i and j respectively. This relaxation is justified by the fact that a Hamil-
tonian cycle which contains an edge {i, j} can be represented as a permutation of the
form [i, j, . . .]. Hence, when adding a new edge {i, j} to the graph, it is sufficient to
consider only Hamiltonian paths which start with the vertices i, j in order to verify that
there is no Hamiltonian cycle which contains the edge {i, j}. However, this weakens
the consistency level of the propagator because there can be Hamiltonian paths which
contain the edge {i, j} but do not start with i, j. Hence, the relaxed propagator may
not remove all inconsistent values from the domains of the unassigned variables. The
following example demonstrates an application of the relaxed propagator.

Example 4. Consider the following partial assignment for an unknown graph G of or-
der 8: {

G1,2 = 1, G1,4 = 0, G1,5 = 0, G2,3 = 1, G3,4 = 1, G4,5 = 1,
G5,6 = 1, G6,7 = 1, G7,8 = 1, G1,8 = 1, G1,6 = 1, G3,7 = 1

}
.

The fixed part of the graph G consists of the edges of the cycle graph C8 and two
additional edges {1, 6}, {3, 7}. This partial assignment does not conflict with the con-
straints ϕUH(G) and sbUH(G). The relaxed propagator, when applied for the assign-
ments G1,6 = 1 and G3,7 = 1 does not remove values from the domains of the unas-
signed variables as there are no Hamiltonian paths which start with 3, 7 or 1, 6. Notice
however that there are Hamiltonian paths which contain the edges {1, 6} and {3, 7}.
For example, [4, 5, 6, 7, 3, 2, 1, 8] and [5, 4, 3, 2, 1, 6, 7, 8]. So the edges {4, 8}, {5, 8}
are inconsistent but are not forbidden by the relaxed propagator. Assume that the vari-
able G2,5 is now selected for branching and is assigned to the value 1, namely, the edge
{2, 5} is added to the graph. When triggered, the relaxed propagator finds the Hamil-
tonian paths [2, 5, 6, 1, 8, 7, 3, 4], [2, 5, 4, 3, 7, 8, 1, 6] and [2, 5, 4, 3, 7, 6, 1, 8] which all
begin with the vertices 2, 5, and ensures that none of these paths can be closed to a
Hamiltonian cycle by fixing G2,4 = 0, G2,6 = 0 and G2,8 = 0, thus, forbidding the
edges {2, 4}, {2, 6} and {2, 8}.

Our implementation integrates several heuristics to guide the search. These are in-
spired by the heuristics for edge selection implemented in the tool generateUHG [11]



for generation of uniquely Hamiltonian graphs. We use a dynamic variable ordering in
which the graph variable Gi,j selected for branching is the smallest with respect to the
lexicographical order on an associated vector defined as follows:

– The first and second entries in the vector are the maximum and minimum values
between the degrees of the vertices i and j in G.

– The third and fourth entries in the vector are the maximum and minimum between
the sums of the degrees of the neighbors of i and of j which are in the cycle Cn.

– The fifth entry in the vector is the number of common neighbors of i and j in G.

When branching on a variable we first assign it to the value 1. We implemented
the constraint model and the search heuristics using the constraint solver Choco 4 [20].
Our implementation is solver independent and can be applied using any other constraint
solver.

We first illustrate the application of our approach to generate all canonical uniquely
Hamiltonian graphs of order n ≤ 13. Table 1 details the generation of uniquely Hamil-
tonian graphs of order 3 ≤ n ≤ 13 using Choco. For each value of n we detail the
number of uniquely Hamiltonian graphs and the solving time. All running times re-
ported are CPU times and specified in an appropriate unit: (s) seconds or (h) hours. We
also detail two statistics regarding the application of the propagator: the number of its
applications, and the total number of Hamiltonian paths explored in all applications.

Table 1: Computing order 3 ≤ n ≤ 13 uniquely Hamiltonian graphs.

n solving time UHn graphs
propagator stats

ham paths executions
3 0.01s 1 0 0
4 0.01s 2 0 1
5 0.01s 3 1 4
6 0.01s 12 1 23
7 0.03s 49 19 97
8 0.18s 482 120 746
9 0.21s 6,380 1,249 8,070

10 1.71s 135,252 17,740 154,701
11 55.36s 3,939,509 298,604 4,211,641
12 3,027.15s 166,800,470 9,054,711 174,410,488
13 66.57h 9,739,584,172 337,842,137 10,038,602,346

The results presented in Table 1 are consistent with those reported using the state-of-
the-art special purpose uniquely Hamiltonian graph generation tool generateUHG [11].
The statistics regarding the propagator indicate that the potential exponential behavior
of Algorithm 1 is not a concern in our setting. In particular, the ratio between the num-
ber of applications of the propagator and the total number of Hamiltonian paths encoun-
tered is quite small. The generateUHG tool is able to generate all uniquely Hamiltonian
graphs for n ≤ 15. Note that there are more than 9∗1014 such graphs. Our general, con-
straint based approach is not able to enumerate this scale of solutions. The experiment



detailed in Table 1 is a starting point to solve graph search problems related to uniquely
Hamiltonian graphs which are based on refinements of the same constraint model.

5.2 Applications

We describe the application of our constraint based approach to answer unresolved
questions in the research of uniquely Hamiltonian graphs. These questions relate to the
class of uniquely Hamiltonian graphs of minimum degree 3, denoted UH3. In partic-
ular, concerning UH3 graphs with specified girth (the length of the smallest cycle in
the graph). The identification of UH3 graphs has received much attention in the re-
search of uniquely Hamiltonian graphs. The interest in UH3 graphs with specified girth
has emerged from [9] where the author asked whether there exist UH3 graphs of girth
greater than 3. A positive answer for this question is given in [22], however that pa-
per shows no concrete examples. The smallest concrete example for such a graph was
found by Royle [21] in 2017. Royle provided a UH3 graph of order 18 with girth 5
and also showed that there are no UH3 graphs of smaller order. Goedgebeur et al. [11]
continued the research on small UH3 graphs with specified girth. They generated all
UH3 graphs with girth at least 5 for n ≤ 22 and found some UH3 graphs of order 20
with girths 3 and 4. They also observed that there are no UH3 graphs with girth 4 for
n ≤ 18 vertices. Motivated by this previous work we ask:

What is the smallest positive n such that a UH3 graph with girth 3 ≤ k ≤ 4
exists, and how many order n graphs with girth k (up to isomorphism) exist?

To answer these questions we generate all UH3 graphs of order 18, and all order
n ≤ 20 UH3 graphs with girth at least 4. From these computations we deduce the,
previously unknown, smallest orders for which UH3 graphs with girths 3 and 4 exist,
and compute all solution graphs of the corresponding orders.

We apply the same constraint programming approach used to generate the results of
Table 1 except that the constraint model is extended: (a) to constrain the degree of each
vertex to be at least three, and (b) to constrain the girth k of the graph to be such that 3 ≤
k ≤ 5. Adding these constraints is straightforward. The degree constraints are specified
using sum constraints on the rows of the adjacency matrix. The girth constraints are
specified using constraints which ensure that there are no cycles of length less than k.
Since k is small these constraints can be implemented efficiently.

Table 2 summarizes the computation of UH3 graphs with girth at least k ∈ {3, 4, 5}
as computed by Choco. After the column n which indicates the order, the next three
columns detail the number of UH3 graphs of order n with girth at least 3–5 and the
time required to compute them. In the table, the symbol ”-” indicates that we could
not compute this case within 100 days of computation. All running times reported are
CPU times and specified in an appropriate unit: (s) seconds, (h) hours or (d) days. The
purpose of the fourth column titled “girth≥ 5” is to verify our results against previously
known results. Our results are indeed in complete agreement with those in [11].

From these computations we obtain the following results: There are eleven UH3
graphs of order 18 and nine of them are of girth 3. Previous work show that the smallest
UH3 graph has order 18, hence these results lead to the following observation about
UH3 graphs with girth 3:



Table 2: Computing UH3 graphs with girth at least 3,4 and 5, respectively.

n
girth ≥ 3 girth ≥ 4 girth ≥ 5

UH3 graphs time UH3 graphs time UH3 graphs time
18 11 13.80d 2 6.97h 2 0.16h
19 - - 1 4.28d 1 1.33h
20 - - 12 91.58d 2 12.01h
21 - - - - 25 5.24d
22 - - - - 33 53.40d

Observation 2. The smallest UH3 graph with girth 3 is of order 18, and there are
exactly nine UH3 graphs of order 18 with girth 3.

All three UH3 graphs of order n < 20 with girth at least 4 have girth 5. There are
twelve UH3 graphs of order 20 with girth at least 4, ten of these are of girth 4, and two
are of girth 5. These results lead to the following observation about UH3 graphs with
girth 4:

Observation 3. The smallest UH3 graph with girth 4 is of order 20, and there are
exactly ten UH3 graphs of order 20 with girth 4.

Figure 2 depicts a smallest UH3 graph with girth 3, and a smallest UH3 graph with
girth 4. These graphs were obtained from our implementation.

Fig. 2: UH3 graphs of order 18 with girth 3 (left) and of order 20 with girth 4 (right).

6 Related work

The state-of-the-art uniquely Hamiltonian graph generation tool generateUHG [11] is
based on the notion of canonical construction path [18]. In this approach, to generate
all order n non-isomorphic uniquely Hamiltonian graphs, the algorithm starts with the
cycle graph Cn and iteratively adds edges in all possible ways while checking that the
graph remains uniquely Hamiltonian. To avoid generating isomorphic graphs, the algo-
rithm only visits graphs that are constructed through a sequence of so called canonical
edges. For our purposes it is only important to note that the identification of canon-
ical edges requires the use of calculations of automorphisms and of canonical forms



of graphs during search. In generateUHG, these calculations are performed using the
graph isomorphism tool nauty [17, 19] which has exponential behavior in the worst
case. Our approach in contrast, breaks all symmetries efficiently using a complete sym-
metry breaking constraint of polynomial size. Moreover, as we have shown in Sec-
tion 3 we can compute efficiently the canonical form and the automorphism group of
a uniquely Hamiltonian graph if its Hamiltonian cycle is given, which is the case here.
Hence, the algorithm of generateUHG can utilize our results to avoid symmetries in a
more efficient way. Yet we note that the computation time of our implementation for the
task of generating all uniquely Hamiltonian graphs is not as good as generateUHG. For
example, in our implementation it took 66.57 hours to generate all uniquely Hamilto-
nian graphs of order 13 while in generateUHG it took 7.20 hours. Moreover, our imple-
mentation is able to generate the complete set of non-isomorphic uniquely Hamiltonian
graphs for up to order 13 while generateUHG is able to generate them for up to order
15. We do not expect our general approach to compete with dedicated algorithms for
enumeration. However, for specific problems related to uniquely Hamiltonian graphs
in which the problem is more constrained as described in Section 5.2, we are able to
answer previously unresolved questions which generateUHG could not solve.

7 Conclusion

This paper introduces, for the first time, a complete symmetry breaking constraint
of polynomial size for a significant class of graphs: the class of uniquely Hamilto-
nian graphs. State-of-the-art algorithms for isomorph-free generation of graphs from
this class deal with symmetries in the generated graphs using general purpose graph-
isomorphism testing tools which have worst-case exponential behavior. Our symmetry
breaking method, in contrast, eliminates all symmetries efficiently. We first introduce
a canonical form for uniquely Hamiltonian graphs and show an efficient canonicity
test. Then we show that the automorphism group and the canonical form of a given
uniquely Hamiltonian graph can be computed efficiently given its Hamiltonian cycle.
Based on these results we construct a complete symmetry breaking constraint of poly-
nomial size for uniquely Hamiltonian graphs. We demonstrate the application of the
proposed symmetry breaking constraint using a constraint based approach and show
new results regarding uniquely Hamiltonian graphs.

An important aspect of this paper is future work. To date there is no known com-
plete symmetry breaking constraint of polynomial size for graph search problems in
general. Identifying significant classes of graphs for which such symmetry breaking
constraints exist is important for two reasons: first, it may help to solve additional hard
graph search problems, and second, it may improve our understanding of symmetry in
graph search problems in general. This paper takes a step in this direction and can be
seen as a first answer, for graph search problems, to the question posed by Walsh [26]
who discusses several tractable cases for symmetry breaking: ”Are there other common
types of symmetry which occur in practice that are polynomial to break?”



References

1. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM
9(1), 6163 (Jan 1962)

2. Bondy, J., Jackson, B.: Vertices of small degree in uniquely Hamiltonian graphs. Journal of
Combinatorial Theory, Series B 74(2), 265 – 275 (1998)

3. Cameron, R., Colbourn, C., Read, R., Wormald, N.C.: Cataloguing the graphs on 10 vertices.
Journal of Graph Theory 9(4), 551–562 (1985)

4. Codish, M., Ehlers, T., Gange, G., Itzhakov, A., Stuckey, P.J.: Breaking symmetries with lex
implications. In: Gallagher, J.P., Sulzmann, M. (eds.) Functional and Logic Programming -
14th International Symposium, FLOPS 2018, Nagoya, Japan, May 9-11, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10818, pp. 182–197. Springer (2018)

5. Codish, M., Frank, M., Itzhakov, A., Miller, A.: Computing the Ramsey number r(4, 3, 3)
using abstraction and symmetry breaking. Constraints An Int. J. 21(3), 375–393 (2016)

6. Codish, M., Gange, G., Itzhakov, A., Stuckey, P.J.: Breaking symmetries in graphs: The
nauty way. In: Rueher, M. (ed.) Principles and Practice of Constraint Programming - 22nd
International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings.
Lecture Notes in Computer Science, vol. 9892, pp. 157–172. Springer (2016)

7. Codish Michael, Miller Alice, Prosser Patrick, Stuckey Peter J.: Constraints for symmetry
breaking in graph representation. Constraints 24(1), 1–24 (2019)

8. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predicates for
search problems. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Proceedings of the Fifth In-
ternational Conference on Principles of Knowledge Representation and Reasoning (KR’96),
Cambridge, Massachusetts, USA, November 5-8, 1996. pp. 148–159. Morgan Kaufmann
(1996)

9. Fleischner, H.: Uniquely Hamiltonian graphs of minimum degree 4. Journal of Graph Theory
75(2), 167–177 (2014)

10. Frisch, A.M., Harvey, W.: Constraints for breaking all row and column symmetries in a
three-by-two matrix. In: In Proceedings of SymCon03 (2003)

11. Goedgebeur, J., Meersman, B., Zamfirescu, C.T.: Graphs with few Hamiltonian cycles. Math-
ematics of Computation 89(322), 965991 (Sep 2019)

12. Held, M., Karp, R.M.: The construction of discrete dynamic programming algorithms. IBM
Syst. J. 4(2), 136–147 (1965)

13. Heule, M.J.H.: Optimal symmetry breaking for graph problems. Mathematics in Computer
Science (2019)

14. Itzhakov, A., Codish, M.: Breaking symmetries in graph search with canonizing sets. Con-
straints pp. 1–18 (2016)

15. Itzhakov, A., Codish, M.: Incremental symmetry breaking constraints for graph search prob-
lems. Proceedings of the AAAI Conference on Artificial Intelligence 34(02), 1536–1543
(Apr 2020)

16. McGuire, G., Tugemann, B., Civario, G.: There is no 16-clue Sudoku: Solving the Sudoku
minimum number of clues problem. CoRR abs/1201.0749 (2012)

17. McKay, B.D.: Practical Graph Isomorphism. Congressus Numerantium 30, 45–87 (1981)
18. McKay, B.D.: Isomorph-free exhaustive generation. Journal of Algorithms 26(2), 306–324

(1998)
19. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. Journal of Symbolic Computa-

tion 60, 94–112 (Jan 2014)
20. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Solver Documentation. TASC, INRIA

Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016), http://www.choco-solver.org



21. Royle, G.: What is the smallest uniquely Hamiltonian graph with minimum degree at least 3?
MathOverflow, https://mathoverflow.net/q/255784, URL:https://mathoverflow.net/q/255784
(version: 2020-10-17)

22. Seamone, B.: On uniquely Hamiltonian claw-free and triangle-free graphs. Discussiones
Mathematicae Graph Theory 35(2), 207 – 214 (01 May 2015)

23. Sheehan, J.: Graphs with exactly one Hamiltonian circuit. Journal of Graph Theory 1(1),
37–43 (1977)

24. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search problems. Dis-
crete Applied Mathematics 155(12), 1539–1548 (2007)

25. Walsh, T.: General symmetry breaking constraints. In: Principles and Practice of Constraint
Programming - CP 2006, 12th International Conference, CP 2006, Nantes, France, Septem-
ber 25-29, 2006, Proceedings. pp. 650–664 (2006)

26. Walsh, T.: Symmetry breaking constraints: Recent results. Proceedings of the AAAI Confer-
ence on Artificial Intelligence 26(1) (Jul 2012)


