MipConfigBench: A dataset for learning in the
space of Mixed-Integer Programming
algorithms™*

Nick Doudchenko, Miles Lubin, Aditya Paliwal, Pawel Lichocki, and Ross
Anderson

Google Research

Algorithm configuration (AC), algorithm selection (AS), and parallel algorithm
portfolio (AP) are techniques for systematically choosing algorithm parameters
to improve performance. Respectively, AC finds a single configuration with good
performance over a family of instances, AS predicts good configurations on a
per-instance basis by observing instance features, and parallel AP identifies com-
binations of multiple parameter settings that achieve better performance than
any individual parameter setting. See [8] for a recent survey of these general
techniques. In the context of mixed-integer programming (MIP), commercial
solver developers have very recently begun to recognize and exploit the promise
of choosing algorithm parameters based on instance features [1,2].

Experimenting with these techniques is known to be both computationally
expensive and technically challenging. [3] develops surrogate models for bench-
marking AC techniques without the need for running the algorithms themselves,
and [4] describes common pitfalls in connecting solvers to AC software. These
challenges are particularly acute for MIP, where solving practical instances may
take minutes to hours, and the commercial nature of most state-of-the-art MIP
solvers imposes restrictions on who may run benchmarks and how many solves
may run in parallel.

Inspired by analogous efforts in the ML community like NAS-Bench-101 [10],
to address these challenges we introduce MipConfigBench, a dataset that con-
tains solve data from over 170 million MIP solves using SCIP, a leading academic
solver, after solving MIP instances from the AClib collection [6] across various
meaningful configuration spaces. Alongside, we release open-source code to com-
pute the MIP features used by [5].

Our hope is that researchers will find the MipConfigBench dataset useful
when developing and benchmarking methodologies for AC and related tech-
niques. MipConfigBench is also a dataset for training empirical performance
models [7]. These are machine learning models that predict the runtime of algo-
rithms given features of the input instances. Notably, MipConfigBench allows for
easy experimentation with instance features; after computation of any features,
training becomes a supervised learning problem.

Our talk covers (i) the details of the dataset, (ii) basic statistics that are easy
to compute (e.g., the improvement of the single best solver (SBS) and virtual

* This work has been submitted to a conference. The rules of that conference do not
allow the authors to disclose the name of the outlet.



2

Doudchenko, Lubin, Paliwal, Lichocki, and Anderson

best solver (VBS) over SCIP’s default configuration), and (iii) baselines for AC
using SMAC [9]. Our goal is to solicit feedback from the CPAIOR community on
how such a dataset can be made more useful, and what changes or enhancements
should be included in a future revision.

References

10.

. Berthold, T., Hendel, G.: Learning to scale mixed-integer programs. Optimiza-

tionOnline (2020)
Bonami, P., Lodi, A., Zarpellon, G.: A classifier to decide on the linearization of
mixed-integer quadratic problems in CPLEX. OptimizationOnline (2020)

. Eggensperger, K., Lindauer, M., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Ef-

ficient benchmarking of algorithm configurators via model-based surrogates. Ma-
chine Learning 107(1), 15-41 (Jan 2018)

Eggensperger, K., Lindauer, M., Hutter, F.: Pitfalls and best practices in algorithm
configuration. J. Artif. Int. Res. 64(1), 861-893 (Jan 2019)

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Coello, C.A.C. (ed.) Learning and Intelligent
Optimization. pp. 507-523. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)
Hutter, F., Lépez-Ibdniez, M., Fawcett, C., Lindauer, M., Hoos, H.H., Leyton-
Brown, K., Stiitzle, T.: Aclib: A benchmark library for algorithm configuration.
In: Pardalos, P.M., Resende, M.G., Vogiatzis, C., Walteros, J.L. (eds.) Learning
and Intelligent Optimization. pp. 36-40. Springer International Publishing, Cham
(2014)

Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence 206, 79-111 (2014)

Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: Survey and perspectives. Evolutionary Computation 27(1), 3-45 (2019)
Lindauer, M., FEggensperger, K., Feurer, M., Falkner, S., Biedenkapp,
A., Hutter, F.. SMAC v3: Algorithm configuration in python.
https://github.com/automl/SMAC3 (2017)

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-
Bench-101: Towards reproducible neural architecture search. In: Chaudhuri, K.,
Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Ma-
chine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 7105-7114.
PMLR, Long Beach, California, USA (09-15 Jun 2019)



