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Algorithm configuration (AC), algorithm selection (AS), and parallel algorithm
portfolio (AP) are techniques for systematically choosing algorithm parameters
to improve performance. Respectively, AC finds a single configuration with good
performance over a family of instances, AS predicts good configurations on a
per-instance basis by observing instance features, and parallel AP identifies com-
binations of multiple parameter settings that achieve better performance than
any individual parameter setting. See [8] for a recent survey of these general
techniques. In the context of mixed-integer programming (MIP), commercial
solver developers have very recently begun to recognize and exploit the promise
of choosing algorithm parameters based on instance features [1, 2].

Experimenting with these techniques is known to be both computationally
expensive and technically challenging. [3] develops surrogate models for bench-
marking AC techniques without the need for running the algorithms themselves,
and [4] describes common pitfalls in connecting solvers to AC software. These
challenges are particularly acute for MIP, where solving practical instances may
take minutes to hours, and the commercial nature of most state-of-the-art MIP
solvers imposes restrictions on who may run benchmarks and how many solves
may run in parallel.

Inspired by analogous efforts in the ML community like NAS-Bench-101 [10],
to address these challenges we introduce MipConfigBench, a dataset that con-
tains solve data from over 170 million MIP solves using SCIP, a leading academic
solver, after solving MIP instances from the AClib collection [6] across various
meaningful configuration spaces. Alongside, we release open-source code to com-
pute the MIP features used by [5].

Our hope is that researchers will find the MipConfigBench dataset useful
when developing and benchmarking methodologies for AC and related tech-
niques. MipConfigBench is also a dataset for training empirical performance
models [7]. These are machine learning models that predict the runtime of algo-
rithms given features of the input instances. Notably, MipConfigBench allows for
easy experimentation with instance features; after computation of any features,
training becomes a supervised learning problem.

Our talk covers (i) the details of the dataset, (ii) basic statistics that are easy
to compute (e.g., the improvement of the single best solver (SBS) and virtual
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best solver (VBS) over SCIP’s default configuration), and (iii) baselines for AC
using SMAC [9]. Our goal is to solicit feedback from the CPAIOR community on
how such a dataset can be made more useful, and what changes or enhancements
should be included in a future revision.
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